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An explicit sympiectic integration scheme which describes the self-
consistent wave particle interaction is developed. The integrator does
not split the hamiltonian trivially into a kinetic and potential part. The
integrator yields accurate growth rates for the gentle-bump instability
even when the timestep is of the order of the inverse plasma frequency.
This represents up to a tenfold reduction in computation compared to
conventional schemes. The integrator is generalizable to arbitrary order
without increase in storage requirements, but tests show that when the
accuracy requirements are of the order of a few percent, the second-
order method is the most efficient,  © 1993 Academic Press, Inc.

1. INTRODUCTION

We have developed both second-order and fourth-order
explicit symplectic integration schemes for the self-consis-
tent interaction of charged particles with electrostatic
waves, Symplectic integration schemes are those which
preserve the Poincaré invariants and, as a result, are
expected to have impoved stability. Previous work on
hamiitonian formulations of particle simulations (e.g.,
Ref. [25]) effectively gave symplectic schemes for
infinitesimal step size. Here we show how to advance
symplectically particles and waves in a simulation with
finite timestep.

We report accuracy studies for the analytically known
preblems of the cold beam [1] (one wave, cold beam) and
the linear warm beam (one wave, warm beam). We find that
for moderate accuracy { ~ 5% ) the method gives the correct
maode growth rate and saturation frequency for timesteps of
the order of the inverse plasma frequency, resulting in gains
of up to an order ol magnitude over the speed of fourth-
order Runge-Kutta. For that level of accuracy, we lind that
the second-order method is the most efficient. We also
observe that the total energy in the system is conserved very
well (better than one part in 10°) for very long timesteps,
although all other observables, including the growth rate,
quickly diverge from their exact values for timesteps much
greater than the inverse plasma {requency.

Symplectic integration has been known for some time
{23, but recently there has been an explosion in the
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literature of symplectic integration methods [3-6]. Of par-
ticular interest are the new explicit integrators [7, 8, 26],
which not only have all the good stability properties, but
also require fewer force evaluations and less computer
storage when the higher-order forms are used. These
mcthods are rapidly being applied to many physical
systems, including planetary cvolution [97], the motion of
charged particles in plasma confinement devices [ 107, and
the study of plasma turbulence [11, 12].

The development of symplectic integration schemes is
driven by the expectation that they will be more stable and
that they will model more accurately the important features
of hamiltonian systems when used with large timesteps. This
expectation is raised by the KAM theorem, which states
that symplectic approximations (for sufficiently small
timestep) preserve most invariant sets and the nature of the
motion on them. General symplectic integration methods
are applicable whenever the dynamics is given by
Hamilton's equations, as is the case for all fundamental
interactions, Explicit symplectic integration methods can be
used whenever the hamiltonian can be broken into several
pieces, and Hamilton's equations for each of the pieces can
be solved exactly. The leapfrog method, in which the
hamiltonian is broken up into the kinetic and potential
energy parts which are then advanced separately, is the
simplest example.

In addition to their good stability properties, symplectic
methods are also desirabie because of the properties of their
higher-order versions. Higher-order symplectic integration
methods require no additional storage and lewer derivative
evaluations than higher-order standard methods. Fourth-
order Runga-Kutta, for example (e.g., Ref. [137), requires
the storage of two intermediate state vectors or state-vector
differences, and four evaluations of the forces. By contrast,
fourth-order symplectic schemes require no storage of
intermediate values of the state vector, and only three
evaluations of the forces. The first property ailows one to
consider higher-crder methods in particle simulations for
the first time,

In the following section we will describe brie(ly the physi-
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cal problem that motivated the work, and review previous
analytical and numerical results for the restricted problem
that we use to benchmark the code. In Section 3 we will
describe the integration scheme and in Section 4 we will
show our numerical results.

2. THE PHYSICAL PROBLEM

The integrator was developed to study the nonlinear
stage of the seif-consistent interaction of a weak warm beam
with a cold background plasma [12]. In this section we
describe the equivalent hamiltonian system used in our
numerical experiments, and review previous analytical and
numerical work done on the restricted problem of a cold
beam.

A weak beam interacting with a background plasma will
excite plasma waves in the part of the spectrum where
v(df/dv) >0, where f(x, v, t) is the distribution function.
The part of the spectrum that will be subject to the
instability, as well as the wave growth rate, are given by
quasilinear theory [14, 157. Although quasilinear theory
has been accepted for so long that it is in the textbooks (e.g.,
Ref. [16]), recent theoretical work [17-19] indicates that it
underestimates the wave growth rate by roughly a factor of
two, even in the regime where its validity is generally
accepted. As yet, no such discrepancy has been observed in
experiments [207], but numerical work with both a test
particle code [117] and the self-consistent code described
here [12] indicates that there can indeed be an enhance-
ment of the growth rate over quasilinear theory, although
restricted to a smaller regime. '

Traditionally, this and similar systems have been studied
numerically using particle-in-cell techniques, but since the
nonlinearity of the background plasma is unimportant, we
follow Ref. [1] and study the equivalent system of charged
particles interacting with electrostatic waves. The system
can be described in hamiltonian form [21], and this is the
formalism we use here. The hamiltonian formalism allows
us to concentrate our computational resources on the evolu-
tion of the particles that form the tail of the distribution
function, with no computational effort expended on the
background plasma. It also altows us to compare our results
with those of Refl [1] for the cold beam case and even to
study the linear warm beam-plasma instability, where a
single wave interacts with a broad beam.

The hamiltonian describing the interaction of N charged
particles with M electrostatic waves is given by [22]

1 ad 2 1 & 2 2
H=23% pi+- Y o (X.+7Y})
21':1 2r:=1
e Xp,
VL L,

1
x [¥,sin(k,x,)— X, cos(k,x;)],

where x; and p; are the particle position and momentum,
respectively, w, =, is the wave frequency {equal to the
plasma frequency), &, is the wavenumber, @, =% ./ X2+ ¥
is the wave amplitude, and ¢, =arc tan(Y, /X, } is its phase.
The bulk of the plasma is a linear dielectric with dielectric
constant Dk, w) whose only function is to support the
plasma waves, y=n,/n, with n, and n, the beam and
plasma number density, respectively, is the coupling con-
stant, and f,,is given by 8, = [8D(k, w,)/éw,] ', whichin
our case is 1 /,/_ for all = (we use a cold background plasma,
so the plasma dielectric is given by D(k, w) =1—w;/w?).
The derivation of Egq. (1) relies on the amphtude
variation being slow compared to the wave frequency. For
collective oscillations this requires the frequency shift away
from @, and the growth rate to be small compared to w,.
For random fluctuations, since the sum over sin{kx;) goes
as N'", this gives the condition \/2n(f,/k,) € ®,a,, where

a,=1./X2+ Y?is the wave amplitude.

The equations of motion for the above hamiltonian are

_OH
Xp= ap,'_pl
oH n Y
ﬁf: _a_x,= - angl [ﬁn Yn Cos(knxi}
+ﬁan Sin(knxi)] (2)

. H
X,= gtY" =w,Y ;l = sin(k,x

. éH
Y, =—=—~= —cos(k

" T, ,; )

The wave equations of motion are those for a harmonic
oscilator with frequency w,, whose amplitude is driven by
particle currents at a rate controlied by the value of the
coupling constant #.

In the following section we will outline the integration
scheme. In Section 4 we will show that our integrator gives
the correct linear growth rate for the cold beam model with
timesteps of the order of the inverse plasma frequency (for
a few percent accuracy). We will also show the evolution of
a single wave interacting with a warm beam and show that
the integrator gives the correct growth rate and resonance
width for the wave with a timestep comparable to the
inverse plasma [requency.

3. DESCRIPTION OF THE INTEGRATOR

The explicit symplectic integrator developed in
Refs. [7, 8] for a hamiltonian H(g, p}= H,(q, p)+ H.(q, p)
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(see also [26] for a comprehensive description) is defined in
terms of the transformations:

Ti(r)=eﬁz£‘l! L1f= {Hlaf}; (3)
Tor)=e "3 L,f=1{H,f},
where
_ _0H,of OH,of
Lf={H =G =5 5 (4)

is the Poisson bracket of H; and f with respect to p and ¢.
The method allows both H, and H, to depend on both p
and ¢, even though this may not be apparent in previous
work. T, is the transformation that gives the exact evolution
for H,, while T, gives the exact evolution for H,, If we
denote by T{(z) the operator which advances the total
hamiltonian A exactly, then to second order in the timestep
one has

T(r)=e™ " =Ty1/2) To(1) T\(1/2)+ O(r7).  (5)

T,T,T, is symplectic since it is a product of symplectic
operators. With H,=H,(p) and H,= H,{q), the above
scheme is the leapfrog method. The generalization gives the
new scheme the power needed to use longer timesteps, as we
will see later.

To implement the integration scheme described above,
we break the hamiltonian in Eq, (1) into two parts:

N
=330

Hy=H-H,. (6)

Since H, depends only on the p,, the transformation T, is
trivial; the X,, Y,, and p, stay constant, and the x; are
advanced with constant momenta,

T(1): x; = x,+ pi7, {7

so the transformation T, advances the particle positions by
free streaming.

The transformation T, is slightly more complicated. Since
i, is independent of p, the x; are constant. We therefore

have
X,= w, Y, + f sm(k
1—1

=a),,Y,,+S,,

(8)
oH
n X Z cos(k X;)

CARY AND DOXAS

where the S, and C,, are constants, since the x, are constant
during T,. If we now put X,=C,/w, and ¥,= -S,/o,,
Eqs. (8) become

d _ =
E(Xn_Xn)=mn(Y”_ Y")

d (9)
E (Yn_ Yn)= _w”(X""Xn);

i.e., the waves are advanced as harmeonic oscillators about a
fixed centre (X,, ¥,). The solution of the above equations is
then given by

X, —X,=(X°—X,)cosw, 1+ (¥Y5—Y,)sin w,!

- (10)
Yn_Ynz(YS_

Y )cosw,t—(X2—X,)sinw,?,

where X, =X%and ¥,=Y%at r=0.
We can now advance the momenta. The equations of
motion for the momenta

x[B,Y,cos(k,x;)+ P.X,sin(k,x,;)] (11)

are easy to integrate using Egs.(10) since the x, are
constant. We find

Ap, = Z ﬁ,,[cos(k )j (1) dt

n—l

+sin(k, x,) j X, (1) a’t]
0

Zﬁ

n—-l

[cos (k.x;) (7,,1 +

AX,
wn

- 4X,
+sin(k,,x,-}(X,,t— ):l, (12)
w?‘l
where
4X,=(X, - X )cosw,1—1)+(Y,~Y,)sinw,t (13)
AY, =(Y, - ¥ Neosw,1—1)—(X,— X,)sinw,t

s0 that the transformation T, is given by
X, =X, +4X,
Y, - Y,+4Y,

pim pim | z B, [costnx )Pt + AX, j0,)

n—l

+sin(k,x ) (X, 1 —4Y,/w,)]
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Yﬁm i cos{k,x,),
k,,w,,ﬁ;=1
o JmB, &

Y,.= Y sin(k,x;).

" knwnﬁf=1

The above scheme differs from the leapfrog method in
that both wave coordinates are advanced together during
T,, the only approximation being that we consider the
particle positions constant. The leapfrog method would
advance the wave “positions” and their conjugate
“momenta” (X and Y, respectively} in alternate steps. Since
the equations for the waves are coupied, there is really no
leapfrog scheme for this problem (the hamiltonian cannot
be separated into two parts of the form H(p, ¢)=
Hi(p)+ Hy(q)).

We have also developed a fourth-order integrator
following Refs. [7, 8], which we will compare with the
second-order one described above. The integrator is given
by

(14)

T(t)=e " x T (a1) To(f7) T'(y7) T,(d7)
x T(yt) To(fr) Th(ar) + O(°), (15)

where

2+2i13+2—1/3
=

6
1
b=sm
o (16)
1213 2=
?—T
1

As can be seen from Eq. (15), the fourth-order method
requires three evaluations of the forces per timestep, as
opposed to only one for the second-order, and must there-
fore be able to use a timestep at least three times longer to
break even in efficiency. As we will see in the next section,
the fourth-order integrator can use a timestep twice as long
as the second-order one for ~5% accuracy, so for that
accuracy level the second-order method is most efficient.

4. NUMERICAL RESULTS

We have used the above scheme to study the analytically
known problem of a cold beam [1] as well as the linear
warm beam-plasma intcraction (a warm beam interacting
with only one wave) to demonstrate the accuracy of the new
scheme. We find that we can obtain the wave growth rate,
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as well as the frequency of oscillation after saturation, to
within ~ 5% using a timestep of the order of the inverse
plasma frequency with the second-order method.

4.1. The Cold-Beam Case

The cold-beam model [1] applies when Av, <€y, /k,
where Av, is the width of the beam. After a few exponentia-
tions, an initially equally distributed spectrum of back-
ground noise will eventually be dominated by the fastest
growing wave, whose phase velocity is calculated to be at

(17)

away from the beam velocity v,. This wave will grow
exponentially with the linear growth rate until saturation,
when it will trap the beam electrons and will begin to
oscillate about a constant amplitude. The wave growth rate
is calculated by linear theory to be

\/i 7\
)’L=—2“(§) Wy, (18)
where n =n,/n, is the beam to plasma density ratio, and w,
is the plasma frequency. The frequency of oscillation of the
saturated wave is calculated numerically in Ref. [1] and is

given by
4 1/3
Wy T 1 w,.
32 e

For the cold-beam case, we use 8000 particles interacting
with a wave whose wavenumber is chosen to be unity, and
we follow the wave amplitude in time. At ¢ =0 all particles
have the same velocity v, = 1. As a reference for our error
estimates we use the results obtained with the fourth-order
method and timestep w, 4t =0.125 (@, is the plasma fre-
quency). We use that run as a reference because the results
do not change if we reduce the timestep further and because
the value of the growth rate and frequency of oscillation
after saturation agrec with Rel [1]. The beam to plasma
density ratio is chosen to be n= 1.6 x 10 %, so the theoreti-
cal growth time is T, = 1/y; = 577. With the reference run we
find 1,=578 and w, =2.62x 10~7, while the value for the
frequency of oscillation after saturation found numerically
in Ref. [1]is w, = 2.67 x 10~ The discrepancy in the value
of the oscillation frequency is higher than that of the growth
time because we had to read the value obtained in Ref. [ 1]
off a small graph (they do not quote a numerical value).
Figure 1 shows the wave energy as a function of time
for our reference run (fourth-order symplectic with
w, A1=0.125) drawn as a solid line, and the results of the
second-order symplectic method for two different timesteps.

{19)
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FIG. 1. The wave energy of the system described by Eq. (1} for the
cold beam case, for two different values of the timestep {second-order
method). The solid line is the result obtained with the fourth-order method
and timestep w, 4t=0.125. The dotted curves are labeled with their
respective titnesteps.

The second-order symplectic method is seen to give the
growth rate and nonlinear frequency of amplitude oscilla-
tion to within 5% with a timestep of w, Af = 1. Increasing
the timestep to w, At =2 does decrease the accuracy of the
integration, but the simulation still gives qualitatively
correct results. There is exponential growth followed by
nearly dissipationless bounce oscillations.

The results of the fourth-order sympiectic scheme are
compared with the reference run in Fig, 2. The fourth-order
scheme produces results accurate to 5% with a timestep of
w, At = 2. This timestep is longer than that for the second-
order method, but not sufficiently to improve efficiency. As
the fourth-order method requires three force evaluations per
timestep rather than one, it actually requires 50% more
computation at the 5% accuracy level, Since it is of higher
order in Ai, it becomes inaccurate more quickly as the
timestep is doubled to @, 41 =4, as is seen in Fig, 2.

Finally, we compare our results with fourth-order
RungeKutta in Fig, 3. For a 5% error in the growth rate,
Runge-Kutta requires a much smaller timestep, @, A7 =0.4.
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cupm=2

G
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FIG. 2. The wave energy of the system described by Eq. (1) for the
cold beam case. Fourth-order method, two different values of the timestep.
The solid line is the result obtained with fourth-order and timestep
@, At =0.125 (same run as the solid line in Fig. 1). The dotted curves are
labeled with their respective timesteps.
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FIG. 3. The wave energy of the system described by Eq. (1) for the
cold beam case. Two different values of the timestep using fourth-order
Runge-Kutta. The solid line is the resuit obtained with the fourth-order
symplectic method and timestep w, 4t =0.125 (same run as the solid line
in Figs.1 and 2). The dotied curves are labeled with their respective
timesteps.

This means an increase in computation by a factor of 10, a
factor of four because the Runge-Kutta method requires
four force evaluations per timestep, and a factor of 2.5 from
the decrease in the step size. Thus the symplectic integration
scheme is an order of magnitude more cfficicnt than this
standard method. Figure 3 also shows that even at timestep
w, At =0.4, the Runge-Kutta method obtains an amplitude
value at the second minimum that is off by a factor of order
unity. Finally, Fig.3 shows that the fourth-order
Runge-Kutta method goes rapidly bad with increased
timestep, just like the fourth-order symplectic method.
Total energy conservation is often used to indicate when
a simulation can be trusted. In Fig. 4 we plot the total
energy versus time for the reference case, the second-order
symplectic integrator with w, 4¢ = 10, and the fourth-order
Runge-Kutta with @, 4t =0.4. The second-order symplec-
tic scheme is seen to conserve energy well long past the point
{(in A4¢) where the calculated growth rates and frequencies
become inaccurate (the symplectic integrator is not exactly
energy conserving, because only the exact symplectic solu-

B
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3998 mp -

3996
3694 S,

3592 .
Runge-Kutta, @pAt=04

3990 T

s,

3988

3560 5000 7500 16000 12500 15000 17500 °P'
FIG. 4. The total energy of the system obtained with the symplectic
method and with fourth-order Runge-Kutta. The solid line is the result
obtained with the fourth-order symplectic method and timestep
w, Ar=0.125 (same run as the solid line in Figs. 1-3). Dotted curves are

labeled with their respective method and timestep.
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FIG. 5. The relative error in the value of the growth rate for the one
wave warm beam case, as a function of the ratio &k dv, fy; .

tion conserves energy [231}). Thus, energy conservation
does not indicate accuracy of simulation. To some degree
this can also be said of the Runge-Kutta integrator, which
conserves total energy to approximately one part in 360 by
the end of the simulation, yet gives a vaiue for the wave
amplitude at the second minimum that is off by a factor of
order unity (cf. Fig. 3).

4.2, The Warm-Beam Case

For the case of a warm beam interacting with only one
resonant wave, the growth rate is given by linear theory to
be

(20)

where f(x, v, ) is the particle distribution function and w,, is
the piasma frequency. The resonance half-width ofthe wave
is given in terms of the parameters in the hamiltonian (1) by
(see, e.g., Ref. [247)

a.f, (2m\"*
5 =2 [LnfnfH
=2 [ (N) ,

In(Ey,)
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where n=n,/n, is the beam to plasma density ratio,
a,=4%./X2+ Y2 is the wave amplitude, and g, = 1/,/2 for
a cold plasma. Equation (20) gives the wave growth rate,
provided that

.);C_L«AU&:

(22)
where Av, is the width of the bearn and £ is the wavenumber.
The above condition means that the Fourier interaction
width of the wave must be smaller than the width of
the beam for the wave to be able to see the slope of the
distribution function.

We find that condition (22) is actually quite restrictive.
Figure 5 shows the percentage of error in the value of the
growth rate as a function of the ratio k dv,/y, (k is equal to
unity in this simulation). In order to obtain 1% accuracy,
we need a ratio k Av, /y, = 100, which is the main reason we
were forced to use so many more particles than in the
cold-beam case.

In Fig. 6 we show our results for the linear warm-beam
case (a warm beam interacting with a single wave). We use
512,000 particles with a distribution function given by

f0)=C+ G (1-2), (23)

where f(v) = 0 outside the range v, < v < v,. The coefficients
C, and C, are obtained from normalization and from the
linear growth rate v, (cf. Eq. {20)), and are given by

_ 2y,
2wy,
1
’ (24)
C. = 1+ Cyfo, In(vy/v,) — 02+ 041
1= )
(v —1)
b
f(v) 4000
3000
2000
1000 281.
0 0.8 0.9 3 1.1 1.2 v

FIG. 6. The warm beam case with one wave: (a) shows the wave energy versus time. The solid line was obtained with the fourth-order method and
w, At=025, the dotted ling with the second-order method and w, 4t =038, and the dashed line with fourth-order Runge-Kutta and e, 41 =043,
(b) the particle distribution function at w, f = 3250 (obtained with the fourth-order symplectic method, o, 41 = 0.25). The width of the region over which
S(v}is flatened, is approximately equal to the single mode resonance width at w,f = 3250 {at which time a, = 6.33).
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where # =n,/n, is the beam to plasma density ratio (f(v) is
normalized to #). For our run k=1, #=302x10"%
v; =075, and v, = 1.25 with an initial linear growth time of
7, =1/y, =200. The form of the distribution function was
chosen so that the growth rate is constant over the entire
velocity range.

Figure 6a shows the wave energy as a function of time for
three different runs. The solid line is the reference run which
uscs the fourth-order method and timestep w, 41=0.25. It
gives 1,=1202, within 1% of the theoretical value. The
dotted curve was obtained with the second-order sympiectic
method and timestep w, A¢=0.8 and the dashed one with
fourth-order Runge-Kutta and timestep w, 471=045.
The fourth-order symplectic method is found to give
approximately 5% accuracy with @, 4r=1.75, and it is
omitted from the graph for clarity. We see again that the
symplectic methods can use timesteps of the order of the
inverse plasma frequency for an accuracy level of
approximately 5% and achicve computational savings of
up to a factor of 7 over fourth-order Runge-Kutta.

The distribution function at w,=3250 is shown in
Fig. 6b. The width of the part of the distribution that is
being flattened by the interaction with the wave is
approximately 28 =0.052. This is within ~7% of the
theoretical value 28, = 0.056 of the wave resonance width at
that time (cf. Eq. (21); at @,¢ = 3250 the wave amplitude is
a,=6.33).

5. CONCLUSIONS

We have developed and implemented second-order and
fourth-order symplectic integration schemes for the self-
consistent interaction of charged particles with electrostatic
waves. For the 5% accuracy level typical of plasma simula-
tions, we find that both schemes give good results with
timestep of the order of the inverse plasma frequency, but
that the second-order method is more efficient by a factor of
~1.5. Compared with conventional integration schemes
{e.g., fourth-order Runge-Kutta} the new scheme is more
efficient by up to an order of magnitude. We also find that
total energy is well conserved even for timesteps of the order
of w, At=10, when the integrator no longer foollows any
observable accurately. Thus energy conservation is not an
indicator of code accuracy.
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